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Departamento de Quimica Fisica y Analitica, Facnltad de Quimica, Universidad de Oviedo, 
33006 Oviedo, Spain 
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Abstract. A new technique for deriving painvise potentials from ab initio quantum-mechanical 
calculations of atoms in crystals is presented. The total energy of the crystal referred to the 
infinitely separated atoms is pattitioned into two components: (i) a monocentric deformation 
energy arising from the changes of atomic electron density in passing from the bee atom to 
the crystal state, and (ii) a bicenbie energy due to the atomic interactions in the crystal. We 
show that the first component can be meaningfully separated into painvise contributions. The 
new technique is used to derive Buckingham-type potentials for the alkali chloride crystals that 
(a) reproduce the ob initio crystal energy, @) predict good static equations of state and defect 
properlies. and (c) give a realistic description of the crystal binding. 

1. Introduction 

An increasing interest in deriving reliable painvise interatomic potentials (IPS) from ab initio 
potential energy surfaces (PES) has evolved in the last few years [l-81. This approach has 
the advantage of making possible the theoretical study of systems such as dilute impurity 
crystals [14], or experimentally unknown polymorphs [MI, for which the methods of 
deriving empirical IPS are difficult to apply. Ab inirio PESS are also a major quality test for 
the theoretical strategies adopted in pair-potential work, as Lu and Hardy [7] have recently 
discussed for Gordon-Kim IPS [9] in KZSe04. 

The IPS can be generated by fitting analytical expressions for the interatomic interactions 
to a discrete collection of points of the ab initio PES. This procedure is useful when dealing 
with a single pair of atomic species. Recent examples are the first-neighbours IPS for 
impurity-doped alkali halides derived by Pandey et al [ ]A] ,  or the metal-metal IP obtained 
by Blaisten-Barojas and Khanna [SI for beryllium clusters. However, when the ms contain 
interactions between several atomic pairs, the fitting becomes ambiguous due to the many- 
body terms of the quantum-mechanical energy. This ambiguity means that very different IPS 
can give similar descriptions of the PES, as shown by van Beest eta! [8] in their forcefield 
calculations on silicas. This drawback may be overcome if the quantum-mechanical method 
gives explicitly the specific interactions we want to model, and they are used, instead of the 
total energy, to derive the IPS. Although this procedure takes into account the interatomic 
energies in a more realistic way, some arbitrariness still remains because the IPS are forced 
to include the many-body contributions to the PES, as computed in the ab initio work. 

It is well known that atomic electronic densities are generally required to compute the 
IPS. This requirement is a source of further difficulties. For instance, in covalent systems 
this calls for some kind of population analysis if the LCAO approximation is used to compute 
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the PES [6,7]. Such analysis introduces a certain amount of arbitrariness. In ionic crystals, 
it is frequently assumed that the system is made up of well separated ionic species with 
electronic densities given by the free-atom values [9] .  Unfortunately, it has been shown 
that considerable changes in the electronic densities appear in passing from the gas phase 
to the crystal, especially for negative ions [1O-13]. 

Consideration of all these difficulties lead us to use, as the starting point in deriving ab 
initio IPS, an atom-in-the-crystal scheme able to give crystal-consistent electronic densities, 
accurate deformation energies, and detailed interatomic interactions. The ab initio perturbed 
ion (aiPI) method recently developed in our laboratory [1O-13] has been our choice. This is 
a Hartree-Fock (HF) method based on the theory of electronic separability (TES) [ 14-16] and 
capable of including monocentric correlation energy corrections. It has been successfully 
applied to a great variety of crystals and properties. 

In this work we derive reliable pair potentials from aiPl PESs of ACI (A: Li, Na, K, Rb) 
crystals. Thus, atomic and interaction aiPI energies for every different atom in the crystal 
are computed over a wide range of geometrical parameters. Then, the many-body part of 
the cohesive energy is partitioned into painvise contributions by means of a new scheme 
introduced here. 

We paid particular attention to the following five factors: (a) recovering the original 
PES and equilibrium properties by the proposed IPS, (b) relative importance of the different 
interaction terms to the crystal binding, (c) intercrystal transferability of the CI-CI pair 
potentials, (d) comparison of our ab initio IPS with several state-of-the-art empirical IPS 
[ 171, and (e) applicability of the IPS to obtain defect properties. 

Our results show that the Lps generated in this work are fully consistent with the quantum- 
mechanical description of the whole system. In this sense, our work is similar to the method 
proposed by Pandey et a! L1-41 to derive Ps from ICECAP calculations, but differs from the 
work by Lu and Hardy [7] on KZSe04, and by Tsuneyuki et al [6] and van Beest et nl [SI 
on silica, who prepare IPS from quantum-mechanical calculations on small subsets of the 
crystal. 

In the next section w e  present our generating scheme. Section 3 contains the results 
and the discussion. Concluding remarks and future prospects are given in the last section. 

J M Recio et a1 

2. Method 

The description of the aiPl method is given in references [10]-[13]. According to this 
model, the lattice energy Etan of the crystal is given by (see equations (19) and (20) of [ IO]) 

where E,,,, is the total energy of the crystal, E{ is the gas-phase energy of atom A, and 
A sums over the atoms in the crystal. 

E i f  is the self-energy of the atom A upon crystal formation and Et: is the interaction 
energy between atoms A and S. E& is given by 

(2) Edef A - - E A  net -E{  = ( \ v ~ l H ; l ' # ~ )  -E(  

where (rY~lH;l\v~) is the expectation value of the free-atom Hamiltonian over the crystal- 
optimized wave function of atom A. Since '#, is crystal consistent [lo], E& incorporates 
many-body contributions into the lattice energy. 
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In pair-potential theory Ehr is supposed to be expressible as 

with the symmetry condition 

We have now to connect the magnitudes in equation (1) with those in equation (3a). In 
order to do so, we write the many centre deformation energy in the form 

Equations (1) and (3a) can be identified if all terms but the first one are neglected in 
equation (4), i.e., if the deformation energy can be partitioned into two-centre contributions. 
Absorbing the small high-order contributions into the pairwise term, the IPS derived will 
thus include many-body interactions implicitly. 

Using equation (4), we can write the lattice energy in equation (1) as 

Equations (3a) and (5) bave the same number of terms but equation (5) does not 
necessarily fulfill the symmeuy requirement of equation (3b). To satisfy this, we define 
an average deformation energy for atoms A and S, 

that gives 

Thii form can be directly compared with equation (3a), leading to the key equation 

EAs pur = 2(Ef:) + E:;. (8) 

Equation (8) provides a non-empirical procedure to compute the pairwise interatomic 
energy between two atoms. W e  note the following: (a) E;’ should be computed using 
environment-consistent descriptions for all atoms in the crystal, (l~) a reasonable algorithm 
to compute (E;:) is needed, and (c) the interaction energy between a pair of species will 
change from crystal to crystal due to changes in deformation and interaction terms. This 
prevents an exact transferability of the IPS among different crystals or even different phases 
of a given compound. 

To obtain ( E E )  from U ~ P I  calculations we used the following scheme. First, we classify 
the environment of the atom A into shells of neighbours. The shells are ordered by increasing 
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distance from A.  All the ions in a shell are identical and crystallographically equivalent. 
The conhibution to E& assigned to an ion of the kth shell is computed as 

J M Recio et a1 

Edec - - ( l/nn)((Ur~*...'IHd41Ur~2...k) - (Ur, rH," , U r y - l ) ) )  (9) 
I2 4 k - I )  

where nk is the number of ions in the kth shell, and Ur;'...' the wave function computed 
through an aipl calculation in which the environment is formed only by the first k shells. 
For the ions in the first shell we define 

Ed:: = (I/ndi(*alKjl*:) -E:). (10) 

The function Ivfi'-.k changes upon compressing or expanding the lattice. Thus, these 
pairwise deformation energies depend on the crystal geometry. 

The whole process of deriving the pair potentials for a given crystal and geometry 
consists, then, of a collection of different O ~ P I  calculations. Starting with the free-ion 
description, the wave functions for the ions in the crystal are successively refined by 
introducing the shells of neighbours one at a time. Finally, an aim run is performed for the 
complete crystal in which every ion is self-consistently modified by all its neighbours. The 
interaction energies are computed from the group functions obtained at this last step. 

3. Pafrwise potentials for alkali chloride crystals 

To examine the strengths and limitations of our method, we prepared IPS for the rock- 
salt phase of four alkali chloride crystals (ACI, A: Li, Na, K, and Rb). The &PI crystal 
energy and the interaction and deformation pair energies have been computed for a wide 
range of values of the lattice parameter a. The Coulomb-HartreFock electron correlation 
correction of Chakravorty and Clementi 1181 has been included in the calculation. 

Table 1. Buckingham-type pair potentials computed in this work for the alkali chlorides. Atomic 
units are used throughout. The symbols + and - stand Cor cation and anion, respectively. 

Crystal Ion pair A w B " 
LiCl ++ - - - - 

+- 110.801955 215366930 - - 
-_ 7.60468010 0.960827682 696.M9494 6 

+- 356.517087 2.16074325 - - _ _  2.668 295 14 0.866 344 682 551.810 140 6 

- - - - NaCl ++ 

KCI ++ 6071.067 18 2.62142568 0.11670928 6 +- 53.901 5904 1.50670589 - - 
-- - - 8912.91 5 50 8 

RbCl ++ - - 159 850.057 10 
+- 33.7156013 1.36621955 - - 
-_ - - 13 103.3038 8 

To obtain the function E$(R), we determine the deformation and interaction energies 
appearing in the key equation, equation (8). for a collection of distances, R ,  between centres 
A and S. We can imagine two different ways of doing this. First, at a single crystal 
geometry, a given species will appear in different shells of neighbours, each characterized 
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by a particular distance from the central ion. Second, we can use data from a single 
shell and perform calculations for different crystal geometxies. These two approaches give 
slightly different results, partly because the partition of the deformation energy is arbitrary. 
Since the fitting procedure for the potentials derived for the nearest neighbours will be more 
accurate, we follow the second approach here. 

The interionic energies have been represented by an analytical expression formed by a 
point-charge term involving the nominal charge of each ion, plus a short-range Buckingham 
term: 

V = A exp(-aR) - B / R " .  (11) 

E (hartree) E (hartme) 

o,oso 
0.075 

0.045 

4 5 6 7 

R (bohr) R (bohr) 

E (10-4 hariree) 
4.0 

0.0 

4 . 0  

-8.0 

Figure 1. (a)  Cation-anion, (b)  anion-anion, and 
(c)  cation<ation pair potentials derived for the alkali 
chlorides in this work. Atomic units are used i l  6 7 8 9 i o  

R (bohr) throughout. 
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Values of A, a, B ,  and n for cation-cation (++), cation-anion (+-), and anion-anion 
(--) pairs in LiCI, NaCI, KC1, and RbCl are collected in table 1. The ++ interactions in 
LiCl and NaCl are very small and have been neglected. The pair potentials obtained from 
the aiPl PES will be called here Pups 

-2 
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-6 

Elatt (ev) 

O 7 - 7  

- 

- 

r 

Elatt (eV) 

O/ 
I 

-2 I 
I 
I 

(a) LiCl 

-8 t 

I (b) NaCl 

t 

I 

Figme 2 Lattice energy of (a)  LiCI, (b)  NaCI. (c) KCI. and ( d )  RbCI. Bold and fine curves 
correspond to the theoretical intenction potentials of this work and the empirical interaction 
potentids of Catlow et 01 [17], respectively. Squares are the niPr results. 

The R dependence of the Buckingham part is plotted in figure 1. All +- short- 
range interactions are repulsive and can be well represented by an exponential term. Their 
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magnitude increases from Li-Cl to R W 1 .  Li-CI and Na-CI pairs behave in a similar 
way, as do the K-CI and Rb-CI pairs. The CI-CI interactions are much smaller. They are 
repulsive for LiCl and NaCl but attractive for KCI and RbCI. The cation<ation interactions 
are even smaller. 

Most 
remarkably, the conspicuous differences among the Cl-CI potentials suggest difficulties 
in the transferability of the potentials. 

These properties of the potentials are related to the predicted geome~es.  

3.1. Equilibrium properties and the PES test 

To examine the quality of the PIIPs, we compute with them the lattice energy of their 
respective ACI crystals. All interactions larger than one nanohartree have been included. 
The calculations were repeated with the empirical IPS of Catlow er a1 [17] (set I), called 
here EMIF'S. In figure 2 we show the results as well as the aiP1 curves. The PIIP curves 
reproduce very well the aipr values, showing that the arbitrariness in the generation of the 
potentials does not introduce unacceptable errors. Some discrepancies between the PIIP and 
EMIP curves appear in the four crystals, especially in KC1 and RbCI. 

The equilibrium lattice parameter a, and the lattice energy Elatt derived from the PUP, 
EMIP, and aiPI  calculations are collected in table 2. For comparison, we have included 
predictions from the local density approximation [ 19,201 and self-consistent tight-binding 
calculations [Zl]. The observed values or the low-temperature extrapolations are also shown. 
The best prediction of a, is given by the EMIPS because they were calibrated using this 
quantity. Interestingly enough, differences between EMIP and PIIP calculations are smaller 
than 0.30 A for a, and 0.44 eV for Eratt. Note that our set of computed equilibrium values 
compares with the experimental data as well as the corresponding predictions from other 
solid-state calculations. Also, the PIIPS reproduce the equilibrium properties computed with 
the aiPl method well. 

Table 2. Equilibrium lattice parameter or (A) and lattice energy Elan (eV) for lhe alkali halides, 
according to several sources: PIIPS: theoretical pair potentials ofthis work EMIPS: empirical pair 
potentials of Catlow eta1 [17]; oin: ak initio perturbed ion wlculations [24]; other solid-state 
calculations, and low-tempenture experimental data 

crystal 

LiCl NaCi 

as PUPS 5.128 5.540 
EMIPS 5.048 5.556 
aiPr 5.182 
Other calculations 5.32 [I91 

Experimental [U] 5.078 
-Elau PRPS 8.76 

EMIPS 8.90 
ai p1 8.71 
Other calculations 
Exoerimental 1231 8.76 

5.600 
5.737 1191 . .  
5.52 [20] 
5.744 [211 
5.578 
8.30 
8.20 
8.22 
7.94 [21] 
8.02 

6.534 6.782 
6.30 1191 . .  
6:30 [20] 
6.242 1211 6.400 1211 . .  
6.232 6.517 
6.95 6.61 
7.38 7.13 
7.07 6.92 
7.82 [21] 1.76 [21] 
7.37 7.03 
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3.2. Pair potentials and crystal binding 

The non-classical energy of a crystal can be shared out in several ways by the different types 
of pair. Meng ef a1 [3] have pointed out that some of these distributions can fit equally 
well a given set of macroscopic data. However, in the present method, the distribution of 
this energy (Z 11% of Elxl) among the three kinds of interaction (++, +-, and --) is 
uniquely determined. Although there is no experimental procedure to identify the relative 
role of the ++, +-, and -- interactions, we think that some theoretical requirements 
should be imposed upon the IPS, One of these tests is the consistency of similar interactions 
for a family of compounds. 

We collect in table 3 the ++, +-, and --contributions to Elau computed with the PIIPS 
and the EMIPS. The ++ interactions play a minor role due to small cation polarizability 
and large intercationic separations in the ACI crystals. In the PI and EM pictures these 
interactions behave quite alike, although a greater stabilization is given by the EMIPS when 
the cation size increases. 

J M Recio et a1 

Table 3. Distribution of the non-classid energy among the three kinds of pair In alkali halides. 
First row: theoretical pair potentials calculated in this work Second row: empirical pair 
potentials from Cotlow el 01 (171. Units are eV for energies and A for distances. 

crystal ++ +- -- -Ehn -ElaXt a: a, 

LiCl 0.00 0.53 0.62 8.66 8.80 5.164 5.128 
-0.00 0.96 0.11 8.90 8.90 5.046 5.048 

NaCI 0.00 0.71 0.17 8.20 8.27 5.560 5.541 
-0.05 0.97 -0.01 8.14 8.16 5.564 5.557 

KCI 0.00 0.89 -0.05 6.94 6.94 6.464 6.465 
-0.10 0.93 -0.10 7.31 7.37 6.232 6.211 

RbCl -0.01 0.91 -0.05 6.61 6.61 6.745 6.146 
-0.11 0.95 -0.13 7.07 7.12 6.506 6.477 

a Including only the nearest interactions between each pair, 

The +- interactions contribute differently to the two sets of potentials. Within the EMIP 
picture, this contribution is very similar in the four ACI crystals but the PllP values increase 
clearly with the cation size. We think that the latter picture is more realistic. In passing 
from the two-electron Li+ to the 36-electron Rb+, we expect the short-range +- interaction 
to increase, no matter how large the interionic separation may be. This is what the PIIPS 
predict. 

The -- contribution is also different for the two sets. The CI- ion reduces its volume 
from LiCl to RbCl due to the increasing size and decreasing polarization ability of the 
cation. Thus, we expect a decreasing -- contribution to the lattice energy in this direction. 
This is the behaviour found for the two sets, although the EMIP values are smaller. This 
may be due to the use of a single analytical IP for the four crystals. 

The last four columns of table 3 show the predictions of a, and Elatt when only the first 
neighbours of each type of ion are taken into account. There is an interesting conclusion 
from the comparison of both calculations: the equilibrium properties of the ACI crystals are 
almost entirely determined by the interaction between nearest and next-nearest neighbours. 

3.3. Transferability of the chloride-chloride potential 

There is much evidence to indicate that the chloride ion has different electronic density in 
different ACI crystals. This raises doubts about the IP transferability. For instance, Meng 
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et al [3] examined the Ag+-CI- IP in Ag+:NaCl, Ag+:KCl, and Ag+:RbCl by computing 
the activation energy for Ag+ diffusion. They concluded that the IP transferability in these 
cases is not good. In line with this, we have already shown that the C I Z I  interaction 
changes considerably from crystal to crystal. It could be argued, however, that when the 
+- short-range terms are the dominant interaction, the equilibrium crystal properties could 
be well reproduced even if the CI-CI IPS for each system differ. To test this assumption, 
we computed the equilibrium properties of each crystal with the Cl-Cl PUPS derived from 
all other crystals (table 4). 

Table 4. Equilibnum IxDce pmmetero, t i )  and lanlcc energ) Et,, (eV) for the dkdi chlondes 
compuwd with CI-CI polentuls denbed for LICI. SnCI. KCI and RbCl 

a, 4,s 
CILCI potential derived for CI-CI potential derived for 

Cmstal LiCl NaCl KCI RbCl LiCl NaCl KCI RbCl 

LiCl 5.128 4,868 4.446 4.178 8.80 9.18 10.18 10.78 
NaCl 5.647 5.540 5.361 5.313 8.17 8.28 8.58 8.70 
KCI 6.575 6.547 6.465 6.442 6.92 6.91 6.95 6.97 
RbCl 6.843 6.827 6.764 6.746 6.60 6.58 6.59 6.61 

Results for LiCl and, to a lesser extent, NaCl are highly dependent on the Cl-Cl potential 
used. Dispersions as large as 1.2 ik in a, and 2.0 eV in El,, a e  found in LiCl. The situation 
is not so bad in the other crystals. For RbCl, a, and Eta,, are relatively independent of the 
origin of the CI-CI potentials. El,,, is, in any case, less sensitive than ae ,  As expected from 
the curves in figure 1, the IPS derived from KCI and RbCl produce comparable results. The 
different behaviour observed in the four crystals is a measure of the relative importance of 
the -- interactions with respect to the dominant +- terms. 

As a general conclusion, we believe that there is not a single ClK1 potential adequate 
for the four alkali chlorides. The CI-CI IP may be enforced to give accurate predictions of 
equilibrium properties for the ACI crystals only because in KCl and RbCl this interaction 
plays a secondary role. Our analysis suggests that the physical relevance of this enforced 
parametrization is uncertain. 

3.4. Static equatiom of sfate a f  0 K 

The static equation of state @OS) at 0 K can be computed from El&) by means of the 
relation 

P = -(aq,/aa)(aa/av) (12) 

where P is the hydrostatic pressure and V the molar volume, V = fa’. 
A number of detailed P-V diagrams have been prepared 12.41 using equation (12) and 

our PIIPs, We compare here these Eoss with an empirical EOS very useful for real solids. The 
fact that the PUPS have been developed performing calculations at different crystal geometries 
provides our interatomic potentials with a special ability to simulate the P-V behaviour We 
have chosen the universal EOS of Vine! er al [25] as a measure of the quality of our crystal 
simulation. This EOS has recently been tested for a wide variety of compounds, including 
alkali chlorides. Its overall performance makes this equation an appropriate benchmark in 
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EOS work [26,27]. The EOS of Vinet et d [25] connects isothermal P-V data through the 
relation 

(13) 

J M Recio et a1 

InH = InBo + :(BA - 1)(1 - x )  

where H and x are defined as 
H = px2/(3(1 - x ) )  x = (v/vO)'l3 (14) 

where Vo, Bo and BA are the volume, the isothermal bulk modulus, and its first pressure 
derivative, respectively, at zero pressure. 

We show in figure 3 the results of this test. The squares are theoretical points calculated 
with the PIIPs. Straight lines are the best fitted h e t  EOSS. We see a very good agreement 
between the behaviour predicted by the PIIPS and that given by the universal equation. The 
crystals simulated by the PIIPs obey the Vinet EOS with linear cgrrelation coefficients larger 
than 0.9998. 

Figure 3. wss derived from our pair 

lines are the 61 to thc Vinet et nl universal 
equations (13) and (14). 

0.00 0.05 0.10 0.15 0.20 0.25 potentials for the fourcrystals(squares). Full 
2.0 

(1 -x) 

Zero-temperature experimental data for BO and BA are not accessible. Their finite 
temperature behaviour depends upon vibrational effects neglected in this work. Bo increases 
and Eh decreases as T goes to 0. Our PlIP computed values for Bo are (in GPa) 32 (LiCI), 
25 (NaCl), 18 (KCI) and 16 (RbCI), which compare reasonably well with the experimental 
series quoted by Cohen and Gordon [28]: 35.4 (LiCI), 28.5 (NaCI), 20.2 (KCI) and 18.5 
(RbCI). Thus, our predictions follow the trend shown by experimental data: Bo decreases 
from LiCl to RbCl. The range obtained with the PUPS for BA (5.1 zkO.4) also lies within the 
expected interval at low temperature 1291. 

In view of these results, we may conclude that the present atomistic simulation of 
the ACI crystals is adequate since the theoretical EOS is consistent with those empirically 
deduced from real solids, and the predictions of the elastic properties are good. 
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3.5. Substitutional alkali impurities in alkali chloride crystals 

As another example of the applicability of our pops, we report some defect calculations 
of impurities in alkali chloride crystals using the HADES program [30]. The short-range 
nature of the deformation energy, and its fast convergence with the interatomic separation, 
provide a reasonable justification of our present painvise division in defect calculations. It 
is important to keep in mind that the deformation energy contribution to the PIIPS takes into 
account the local environment surrounding each atom. This is particularly convenient when 
dealing with defect properties, 

Defect energies (eV) 

LiCl NaCl KCI RbCl 

Relaxations (nn units) 

0.16 

0.08 

0.00 

-0.08 

I 
LiCl NaCl KCI RI 

Figure 4. (a) Defat energies and (b) local relaxations (in nearest-neighbour (NN) units) of alkali 
cations in alkali chloride crystals. Full and broken lines refer to PIES and EMIPS, respectively. 

We study the defect energies of alkali impurities &ii, Na+, K+, and Rbt) at the 
substitutional sites of the host crystals. In these calculations we allow 122 ions around the 
impurity to move to their minimum-energy configuration, keeping the rest of ions in their 
crystallographic positions. The geometrical distortions are important for the impurity nearest 
neighbours and decrease for the most distant host ions to values less than 0.1% of the lattice 
parameter. Therefore, the interface between the two regions becomes very smooth. The 
interesting feature to emerge from these calculations is that defect energies and nearest- 
neighbour relaxations are mainly determined by the differences between the impurity- 
chloride and host-cation-chloride short-range potentials. The substitutional impurity break., 
the equilibrium stage of the perfect lattice because its short-range interaction energy with 
the chloride ions does not match that of the cation host. If the impurity-chloride interaction 
is smaller than the cation host-chloride one, the chloride ions move towards the impurity to 
restore the zero-force conditions at the ions. In consequence, we expect to have impurity- 
chloride distances less than fa, and negative defect energies in this case. On the other hand, 
when the impurity+hloride short-range interaction is larger than the cation host-chloride 
one, an outward relaxation of the nearest neighbours around the impurity minimizes the 
extra repulsive energy introduced by the defect in the lattice. 
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Our results in figure 4 (full lines) are consistent with the above argument. The curves 
show the expected regularities according to the cation-anion potentials plotted in figure lfa). 
Given a host lattice, values of defect energies and nearest-neighbour relaxations can be sorted 
in the order Li+ < Na+ < K+ < Rb+. Furthermore, defect energies of impurities and local 
relaxations decrease from LiCl to RbCI. Outwardhnward relaxations around the impurity 
always occur along with positivehegathe defect energies. It is important to notice here that 
the trend in the impurity-chloride distances is fully consistent with the arguments based on 
the ion sizes. 

We compare again our results with those obtained using the EMIP set (broken lines 
in figure 4). Overall, the empirically derived potentials also provide the above-mentioned 
trends, although the defect energy is only -0.07 eV for the K+ ion in RbCI. For the 
relaxations, the discrepancies in the predicted values are less than 5%. With respect to the 
calculated EMlP defect energies, a smaller variation is observed in passing from LiCl to 
RbCI, in accordance with the differences between the cation-anion interaction energies in 
these sets (see table 3). 

We have also explored the off-centre displacements of substitutional Li+ in NaCI, KC1, 
and RbC1. There is a well documented knowledge of the off-centre position along the 
(1 11) direction of Li+ in KCI [31,32]. [31] also gives experimental evidence of on-centre 
locations for Li+ in NaCl and RbCI. However, the more recent 1321 gives experimental 
results showing an off-centre position for Li+ in RbCI. As quoted in this article, calculations 
of off-centre behaviour are a delicate test both of the simulation technique and of the 
potentials employed. Using the PIIPS we have obtained the potential-energy curves of Li+ 
in the three host crystals along the (1 11) direction, as plotted in figure 5. Our results predict 
an on-centre position of Li+ in NaCI, but an increasing preference for off-centre positions 
in KCI and RbCI. 

Stabilization energy (mev) - 
\NaCI / 

-1801 , , , 1 
-0.2 0.0 0.2 

d(l11) (nn units) 
Fiyre 5. Stabilimion energy from the 
d(l1 I )  displacement (in nearest-neighbour 
(NN) units) in Li+:ACI (A=Nq K. Rb). 
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This behaviour also agrees with that obtained from other well established methods. In 
particular, our values for the Li+ (1 11) equilibrium displacements in NaCI, KCI and RbCl 
lattices (0, 0.065 and 0.110 in units of the anionsation nearest-neighbour (NN) distance, 
respectively) agree very well with those obtained by Fitzsimons et al 1331 (0, 0.069 and 
0.134, respectively), whereas values of Catlow er a1 [34] with the EMIPS are somewhat 
higher (0, 0.1 17 and 0.156, respectively). 

4. Conclusions and prospects 

A method to obtain IPS from ab initio quantum-mechanical calculations has been developed 
and tested in four alkali chloride crystals. The method is considerably demanding because 
the IPS are constrained to recover (a) the original energy surfaces and (b) the individual 
energetic components for each different pair of atoms in the system. The potentials derived 
for the chlorides have been successfully examined by means of several theoretical and 
empirical tests. These potentials provide a realistic description of the equilibrium properties, 
static EOSS and defect properties of alkali chlorides. Besides this satisfactory macroscopic 
description, the PIIPS collect in a reliable way the physical behaviour of the three different 
interionic interactions operating in the crystals. 

We are presently 
considering the following aspects: (a) introduction of dynamical correlation effects into 
the reference aiP1 formalism; (b) inclusion of explicit three-body interactions in the Ips by 
means of a more complex partition of the deformation energy, and (c) use of multi-variable 
functions to fit the ab initio interionic energies. 

Improvements in the method are in progress in our laboratory. 
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